Efficient Robust Active Appearance Model Fitting

نویسندگان

  • Markus Storer
  • Peter M. Roth
  • Martin Urschler
  • Horst Bischof
  • Josef A. Birchbauer
چکیده

The Active Appearance Model (AAM) is a widely used approach for model based vision showing excellent results. But one major drawback is that the method is not robust against occlusions. Thus, if parts of the image are occluded the method converges to local minima and the obtained results are unreliable. To overcome this problem we propose a robust AAM fitting strategy. The main idea is to apply a robust PCA model to reconstruct the missing feature information and to use the thus obtained image as input for the standard AAM fitting process. Since existing methods for robust PCA reconstruction are computationally too expensive for real-time processing we applied a more efficient method: Fast-Robust PCA (FR-PCA). In fact, by using our FR-PCA the computational effort is drastically reduced. Moreover, more accurate reconstructions are obtained. In the experiments, we evaluated both, the FR-PCA model on the publicly available ALOI database and the whole robust AAM fitting chain on facial images. The results clearly show the benefits of our approach in terms of accuracy and speed when processing disturbed data (i.e., images containing occlusions).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Appearance Model Fitting under Occlusion using Fast-robust PCA

The Active Appearance Model (AAM) is a widely used method for model based vision showing excellent results. But one major drawback is that the method is not robust against occlusions. Thus, if parts of the image are occluded the method converges to local minima and the obtained results are unreliable. To overcome this problem we propose a robust AAM fitting strategy. The main idea is to apply a...

متن کامل

Generative face alignment through 2.5D active appearance models

This work addresses the matching of a 3D deformable face model to 2D images through a 2.5D Active Appearance Models (AAM). We propose a 2.5D AAM that combines a 3D metric Point Distribution Model (PDM) and a 2D appearance model whose control points are defined by a full perspective projection of the PDM. The advantage is that, assuming a calibrated camera, 3D metric shapes can be retrieved from...

متن کامل

Generic Active Appearance Models Revisited

The proposed Active Orientation Models (AOMs) are generative models of facial shape and appearance. Their main differences with the well-known paradigm of Active Appearance Models (AAMs) are (i) they use a different statistical model of appearance, (ii) they are accompanied by a robust algorithm for model fitting and parameter estimation and (iii) and, most importantly, they generalize well to ...

متن کامل

A Head Pose and Facial Actions Tracking Method Based on Effecient Online Appearance Models

Target modeling and model fitting are the two important parts of the problem of object tracking. The former has to provide a good reference for the latter. Online appearance models (OAM) has been successfully used for facial features tracking on account of their strong ability to adapt to variations, however, it suffers from time-consuming model fitting. Inverse Compositional Image Alignment (I...

متن کامل

Pose Normalization for Local Appearance-Based Face Recognition

We focused this work on handling variation in facial appearance caused by 3D head pose. A pose normalization approach based on fitting active appearance models (AAM) on a given face image was investigated. Profile faces with different rotation angles in depth were warped into shape-free frontal view faces. Face recognition experiments were carried out on the pose normalized facial images with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009